Hello everybody,
This is the last video of the school year, however, hopefully this summer I will get a chance to edit the previous ones and make them better looking.
SaadahCentral
Wednesday, May 29, 2013
Wednesday, February 13, 2013
The Skull
Ethmoid-
- superior and medial nasal conchae formed from its projections.
- site of cribriform plate
- bears an upward protrusion, the "cock's comb," or crista galli.
Mandible-
- lower jaw
- contain alveoli bearing teeth.
Maxilla-
- anterior part of hard palate.
- contain alveoli bearing teeth.
Palatine-
- posterior bones of the hard palate
Sphenoid-
- single, irregular, bar-shaped bone forming part of the cranial floor.
- site of sella turcica
Zygomatic-
- Cheekbone
Tuesday, February 5, 2013
Bone:Classification and Structure
Structure:
The bones are classified into two divisions:
- Axial Skeleton {This includes the skull, vertebral column (spine), and the rib cage.}
- Appendicular Skeleton {bone of upper limbs, lower limbs, and the girdles
The 5 major shapes of bones:
- Long Bones-
- Structure
- shaft with two ends
- bone collar surrounding a hollow medullary cavity (area in the middle that holds the yellow bone marrow: fat)
- Diaphysis
- forms the long axis of the bone
- thick collar of compact bone that surrounds the medullary cavity.
- Epiphysis
- has spongy bone on the inside
- outside is covered by compact bone
- proximal is for the end closer to the center of the body
- distal is for the end that is farther away from the center of the body.
- end is covered with thin layer of articular cartilage.
- This cartilage cushions the end during the joint movement & absorbs stress.
- made of hyaline cartilage.
- Epiphyseal Line
- it is a remnant (leftover) of the epiphyseal plate (a disc of hyaline cartilage that grows during childhood to lengthen the bone).
- Periosteum
- glistening membrane that covers the entire external surface.
- Outer Layer- made of dense connective tissue (connective layer)
- Inner Layer- osteogenic (bone creating) layer and consists of osteoblasts (bone-forming cells) and osteoclasts (bone-destroying cells)
- has many nerve fibers and blood vessels which enter via a nutrient foramen.
- Secured to the underlying bone by Sharpy's Fibers ( collagen fibers that extend from the fibrous layer to the bone matrix)
- Periosteum provides anchoring points for tendons and ligaments, at these points the Sharpy's fibers are very dense.
- Endosteum
- internal surface of the bone lined with connective tissue membrane
- covers trabeculae of spongy bone in marrow cavities and lines canals that pass through compact bones.
- Osteoblast and osteoclasts are both located here.
- Ex. (femur, tibia, & phalanges)
- Short Bones-
- somewhat cube shaped
- Ex. (carpals & tarsals)
- Flat Bones-
- thin, flattened
- Ex. (ribs, skull)
- Irregular Bones-
- have complicated shapes
- "odd men out"
- Ex. (vertebrae)
- Sesamoid Bones-
- special type of short bone in the tendon
- vary in size and number in different people
- Some of these change the direction of a pull of a tendon (something connecting a muscle to a bone)
- The function of others is not know
- Ex. (patella)
Compact Bone and Spongy Bone:
Compact Bone-
- This external layer of the bone is very thick and looks smooth.
Spongy Bone
- This part of the bone contains many holes and contains small flat pieces called trabeculae.
- These spaces within the between the trabeculae are filled with marrow (both red and yellow) in living bones.
Function:
There are 5 major functions of bones and these include:
- Support the body and cradle the organs
- Protect vital organs
- Allow movement
- Store Minerals (we like us some calcium and phosphate!)
- Hematopoiesis (it is the formation of red blood cells)
Monday, November 19, 2012
Brain Structures
This is basically a series of videos that will be explaining the different brain structures and the areas located within each one along with the functions. I hope you enjoy and continue watching!
The Structure of the Brain Series Part 4:
Cerebral Cortex Part 2
The Structure of the Brain Series Part 3:
Diencephalon & the Cerebral Cortex Part 1
The Structure of the Brain Series Part 2:
Cerebellum & the Limbic System
The Structure of the Brain Series Part 1:
The Brain Stem
This a saadahcentral production. Be sure to comment, rate, be happy, and to tip your waitresses!
The Structure of the Brain Series Part 4:
Cerebral Cortex Part 2
The Structure of the Brain Series Part 3:
Diencephalon & the Cerebral Cortex Part 1
The Structure of the Brain Series Part 2:
Cerebellum & the Limbic System
The Structure of the Brain Series Part 1:
The Brain Stem
This a saadahcentral production. Be sure to comment, rate, be happy, and to tip your waitresses!
Wednesday, November 7, 2012
Nervous System
Vocab:
Sources for Home:
Action Potential Tutorial/Help! Hope you enjoy.
Sources:
http://www.getbodysmart.com/ap/nervoussystem/neurophysiology/actionpotentials/actionpotential/tutorial.html
http://www.getbodysmart.com/ap/nervoussystem/neurophysiology/actionpotentials/myelinatedaxons/tutorial.html
http://www.getbodysmart.com/ap2/nervoussystem/neurophysiology/action_potentials/unmyelinated_axons/tutorial.html
http://www.getbodysmart.com/ap2/nervoussystem/neurophysiology/action_potentials/refractory_period/tutorial.html
- glia- supporting cells in nervous tissue
- neurons- excitable cells that transmit electrical signals.
- amitotic- meaning they don't divide
Sources for Home:
Action Potential Tutorial/Help! Hope you enjoy.
Sources:
http://www.getbodysmart.com/ap/nervoussystem/neurophysiology/actionpotentials/actionpotential/tutorial.html
http://www.getbodysmart.com/ap/nervoussystem/neurophysiology/actionpotentials/myelinatedaxons/tutorial.html
http://www.getbodysmart.com/ap2/nervoussystem/neurophysiology/action_potentials/unmyelinated_axons/tutorial.html
http://www.getbodysmart.com/ap2/nervoussystem/neurophysiology/action_potentials/refractory_period/tutorial.html
Sunday, October 21, 2012
Connective Tissues Part 2
Sorry guys it took me a long time to post, but it is kind of long.
A. Introduction
1. Cells are organized into layers or groups called tissues.
2. Usually tissues are separated by nonliving intercellular materials that the cells produce.
3. The four major types of tissues of the human body are epithelial, connective, muscle, and nervous.
II. Epithelial Tissues
A. General Characteristics
1. Epithelium covers the body surface and organs, forms glandular tissues and lines internal organs.
2. Epithelial tissue always has a free surface.
3. The underside of epithelial tissue is anchored by a basement membrane to connective tissue.
4. Epithelial tissue lacks blood vessels.
5. Because epithelial tissue cells divide rapidly, its injuries heal rapidly.
6. Epithelial cells are tightly packed, with little intercellular material.
7. In many places, desmosomes attach epithelial cells together.
8. Epithelial cell functions include protection, secretion, absorption, and excretion.
9. Epithelial tissues are classified according to the shape and numbers of layers of cells.
10. Squamous cells are thin and flat, cuboidal cells are cubelike, and columnar cells are elongated.
11. Epithelial tissues with single layers of cells are simple and those with two or more cell layers are stratified.
B. Simple Squamous Epithelium
1. Simple squamous epithelium consists of one layer of flat cells.
2. Substances pass easily through simple squamous epithelium.
3. Examples of places you find simple squamous epithelium are alveoli of lungs and walls capillaries.
C. Simple Cuboidal Epithelium
1. Simple cuboidal epithelium consists of one layer of cubelike cells.
2. Simple cuboidal epithelium is located covering the ovaries and lining kidney tubules and ducts of certain glands.
D. Simple Columnar Epithelium
1. Simple columnar epithelium is composed of one layer of elongated cells.
2. The cells of simple columnar can be ciliated or nonciliated.
3. Cilia extend from the free surfaces and move constantly.
4. Cilia aid in moving eggs through the oviducts to the uterus.
5. Nonciliated simple columnar epithelium lines the uterus and portions of the digestive tract.
6. The cells of simple columnar can secrete digestive fluids and absorb nutrients from digested foods.
7. Microvilli are tiny cylindrical processes extending from the free surfaces of simple columnar epithelium.
8. Microvilli function to increase the surface area of an epithelium.
9. Goblet cells are flask-shaped glandular cells and secrete mucus.
E. Pseudostratified Columnar Epithelium
1. The cells of pseudostratified columnar epithelium appear layered but they are not.
2. The cells of pseudostratified columnar epithelium are fringed with cilia.
3. Goblet cells scattered throughout secrete mucus.
4. Pseudostratified columnar epithelium is located in portions of the respiratory tract.
F. Stratified Squamous Epithelium
1. Stratified epithelium is named for the shape of the cells forming the outermost layers.
2. Cells nearest the free surface of stratified squamous are flattened while cells in the deeper layers are cuboidal or columnar.
3. Stratified squamous that accumulates keratin is located as the outermost layer of skin.
4. Keratin is protein.
5. Keratinization produces a covering of dry, tough, protective material that prevents water and other substances from escaping from underlying tissues and blocks chemicals and microorganisms from entering.
6. Stratified squamous epithelium that does not accumulate keratin is located lining the oral cavity, the vagina, throat, and anal canal.
G. Stratified Cuboidal Epithelium
1. Stratified cuboidal epithelium consists of two or three layers of cubelike cells.
2. Stratified cuboidal epithelium is located lining ducts of mammary glands, sweat glands, salivary glands, and pancreas.
H. Stratified Columnar Epithelium
1. Stratified columnar epithelium consists of several layers of elongated and cubelike cells.
2. Stratified columnar epithelium is located in the vas deferens, part of the male urethra, and part of the pharynx.
I. Transitional Epithelium
1. Transitional epithelium is specialized to change in response to increased tension.
2. Transitional epithelium forms the lining of the urinary bladder, the ureters, and part of the urethra.
3. When the wall of the bladder contracts, the transitional epithelium consists of several layers of cuboidal cells.
4. When the wall of the bladder is distended, the transitional epithelium appears to contain only a few layers of cells.
I'm not going to suggest what to study for the next part of the test before I ask Mr.Zorn what is the next part of the test going to be about. I'll be adding more helpful videos tomorrow night (don't know how late). If it turns out that the test is on Tuesday, then I will add start making them as soon as I get back from school. Please let me know if the previous information for the test has helped and if I should continue making more videos or notes.
A. Introduction
1. Cells are organized into layers or groups called tissues.
2. Usually tissues are separated by nonliving intercellular materials that the cells produce.
3. The four major types of tissues of the human body are epithelial, connective, muscle, and nervous.
II. Epithelial Tissues
A. General Characteristics
1. Epithelium covers the body surface and organs, forms glandular tissues and lines internal organs.
2. Epithelial tissue always has a free surface.
3. The underside of epithelial tissue is anchored by a basement membrane to connective tissue.
4. Epithelial tissue lacks blood vessels.
5. Because epithelial tissue cells divide rapidly, its injuries heal rapidly.
6. Epithelial cells are tightly packed, with little intercellular material.
7. In many places, desmosomes attach epithelial cells together.
8. Epithelial cell functions include protection, secretion, absorption, and excretion.
9. Epithelial tissues are classified according to the shape and numbers of layers of cells.
10. Squamous cells are thin and flat, cuboidal cells are cubelike, and columnar cells are elongated.
11. Epithelial tissues with single layers of cells are simple and those with two or more cell layers are stratified.
B. Simple Squamous Epithelium
1. Simple squamous epithelium consists of one layer of flat cells.
2. Substances pass easily through simple squamous epithelium.
3. Examples of places you find simple squamous epithelium are alveoli of lungs and walls capillaries.
C. Simple Cuboidal Epithelium
1. Simple cuboidal epithelium consists of one layer of cubelike cells.
2. Simple cuboidal epithelium is located covering the ovaries and lining kidney tubules and ducts of certain glands.
D. Simple Columnar Epithelium
1. Simple columnar epithelium is composed of one layer of elongated cells.
2. The cells of simple columnar can be ciliated or nonciliated.
3. Cilia extend from the free surfaces and move constantly.
4. Cilia aid in moving eggs through the oviducts to the uterus.
5. Nonciliated simple columnar epithelium lines the uterus and portions of the digestive tract.
6. The cells of simple columnar can secrete digestive fluids and absorb nutrients from digested foods.
7. Microvilli are tiny cylindrical processes extending from the free surfaces of simple columnar epithelium.
8. Microvilli function to increase the surface area of an epithelium.
9. Goblet cells are flask-shaped glandular cells and secrete mucus.
E. Pseudostratified Columnar Epithelium
1. The cells of pseudostratified columnar epithelium appear layered but they are not.
2. The cells of pseudostratified columnar epithelium are fringed with cilia.
3. Goblet cells scattered throughout secrete mucus.
4. Pseudostratified columnar epithelium is located in portions of the respiratory tract.
F. Stratified Squamous Epithelium
1. Stratified epithelium is named for the shape of the cells forming the outermost layers.
2. Cells nearest the free surface of stratified squamous are flattened while cells in the deeper layers are cuboidal or columnar.
3. Stratified squamous that accumulates keratin is located as the outermost layer of skin.
4. Keratin is protein.
5. Keratinization produces a covering of dry, tough, protective material that prevents water and other substances from escaping from underlying tissues and blocks chemicals and microorganisms from entering.
6. Stratified squamous epithelium that does not accumulate keratin is located lining the oral cavity, the vagina, throat, and anal canal.
G. Stratified Cuboidal Epithelium
1. Stratified cuboidal epithelium consists of two or three layers of cubelike cells.
2. Stratified cuboidal epithelium is located lining ducts of mammary glands, sweat glands, salivary glands, and pancreas.
H. Stratified Columnar Epithelium
1. Stratified columnar epithelium consists of several layers of elongated and cubelike cells.
2. Stratified columnar epithelium is located in the vas deferens, part of the male urethra, and part of the pharynx.
I. Transitional Epithelium
1. Transitional epithelium is specialized to change in response to increased tension.
2. Transitional epithelium forms the lining of the urinary bladder, the ureters, and part of the urethra.
3. When the wall of the bladder contracts, the transitional epithelium consists of several layers of cuboidal cells.
4. When the wall of the bladder is distended, the transitional epithelium appears to contain only a few layers of cells.
Connective Tissues
A. General Characteristics
1. Connective tissues function to bind structures, provide support and protect, serve as frameworks, fill spaces, store fat, produce blood cells, protect against infections, and help repair tissue damage.
2. Matrix of connective tissue is intercellular material.
3. Matrix consists of fibers and a ground substance.
4. Connective tissues have varying degrees of vascularity.
B. Major Cell Types
1. Examples of fixed cells are fibroblasts and mast cell.
2. An example of a wandering cell is a macrophage.
3. A fibroblast is the most common kind of fixed cell in connective tissues.
4. Fibroblasts produce fibers.
5. Macrophages originate as white blood cells.
6. Macrophages are specialized to carry out phagocytosis.
7. Mast cells are usually located near blood vessels.
8. Heparin functions to prevent blood clotting.
9. Histamine functions to promotes some of the reactions associated with inflammation and allergies.
C. Connective Tissue Fibers
1. The three types of fibers produced by fibroblasts are collagenous, elastic, and reticular.
2. Collagenous fibers are thick threads of the protein collagen.
3. Collagenous fibers have great tensile strength.
4. Collagenous fibers are important components of body parts that hold structures together such as ligaments and tendons.
5. Dense connective tissue contains abundant collagenous fibers.
6. Loose connective tissue has sparse collagenous fibers.
7. Elastic fibers are composed of bundles of microfibrils embedded in a protein called elastin.
8. Elastic fibers are common in body parts that are normally subjected to stretching.
9. Examples of places you fine elastic fibers are vocal cords and air passages of the respiratory system.
10. Reticular fibers are very thin collagenous fibers.
11. They are highly branched and form delicate supporting networks in a variety of tissues.
D. Categories of Connective Tissues
1. The two categories of connective tissues are connective tissue proper and specialized connective tissues.
2. Connective tissue proper includes loose connective tissue, adipose tissue, reticular connective tissue, dense connective tissue, and elastic connective tissue.
3. Specialized connective tissue includes cartilage, bone, and blood.
E. Loose Connective Tissue
1. Loose connective tissue is located beneath most layer of epithelium, in thin membranes throughout the body, beneath skin, and between muscles.
2. Most cells of loose connective tissue are fibroblasts.
3. Loose connective tissue functions to bind skin to underlying organs and to fill space between muscles. It also nourishes nearby epithelial cells.
F. Adipose Tissue
1. Adipocytes are cells that store fat.
2. Adipose tissue is located beneath the skin, around the kidneys, behind the eyeballs, and on the surface of the heart.
3. Adipose tissue functions to protect, insulate, and store fat.
G. Reticular Connective Tissue
1. Reticular connective tissue is composed of reticular fibers.
2. Reticular connective tissue supports the walls of the liver, spleen, and lymphatic organs
H. Dense Connective Tissue
1. Dense connective tissue consists of many closely packed, thick, collagenous fibers, a fine network of elastic fibers, and a few cells, most of which are fibroblasts
2. Subclasses of dense connective tissue are regular and irregular
3. Regular dense connective tissue binds body parts together as parts of tendons and ligaments.
4. Irregular dense connective tissue is located in the dermis.
I. Elastic Connective Tissue
1. Elastic connective tissue consists of yellow, elastic fibers, some collagenous fibers, and fibroblasts.
2. Elastic connective tissue is located in the attachments between vertebrae of the spinal column, in the layers within the walls of certain hollow internal organs, including the larger arteries, some portions of the heart and larger airways.
J. Cartilage
1. Cartilage is a rigid connective tissue.
2. Cartilage provides support, frameworks, attachments, protects underlying tissues, and forms structural models for many developing bones.
3. Cartilage matrix is composed of collagenous fibers embedded in a gel-like ground substance.
4. Cartilage cells are called chondrocytes.
5. Lacunae are small chambers in cartilage.
6. Perichondrium is connective tissue covering of cartilage.
7. Cartilage lacks a blood supply.
8. Three types of cartilage are hyaline cartilage, elastic cartilage, and fibrocartilage.
9. The most common type of cartilage is hyaline.
10. Hyaline cartilage has very fine collagenous fibers in its matrix.
11. Hyaline cartilage is located on the ends of bones, in the soft part of the nose, in the supporting rings of the respiratory passages, and in the embryo’s skeleton.
12. Elastic cartilage has a dense network of elastic fibers in its matrix.
13. Elastic cartilage is located in parts of the larynx and as the framework for the external ear.
14. Fibrocartilage has many large collagenous fibers in its matrix.
15. Fibrocartilage is located between vertebrae, in the knee joints, and the pelvic girdle.
K. Bone
1. Bone is the most rigid connective tissue.
2. The hardness of bone is due to mineral salts such as calcium phosphate.
3. Bone functions to support body structures, protest vital structures of the cranial and thoracic cavities, and as attachment sites for muscles. It also stores inorganic salts and produces blood cells.
4. Bone cells are osteocytes.
5. Lamella are thin layers of bone formed by osteocytes.
6. Osteocytes form lamella around a central canal.
7. An osteon is a cylinder-shaped unit of compact bone. It contains a central canal, lamella, and osteocytes.
8. A central canal of an osteon contains blood vessels and nerves.
9. Canaliculi are minute tubes in the matrix of bone.
10. Processes of osteocytes extend through canaliculi.
11. Gap junctions attach osteocyte cellular processes together so that materials can move between blood vessels and bone cells.
L. Blood
1. Blood is composed of cells and plasma.
2. Plasma is the fluid part of blood.
3. Cell types of blood are red blood cells, white blood cells, and cellular fragments called platelets.
4. Red blood cells function to transport gases.
5. White blood cells function to fight infection.
6. Platelets function to produce blood clots.
Types of Membranes
A. Epithelial membranes are composed of epithelial and underlying connective tissues.
B. Three types of epithelial membranes are serous, mucous, and cutaneous.
C. Serous membranes line the body cavities that lack opening to the outside and secrete serous fluid.
D. Mucous membranes line the cavities and tubes that open to the outside of the body.
E. The cutaneous membrane is also called skin.
A. General Characteristics
1. Cells in muscle tissues are called muscle fibers due to their elongated shape.
2. Muscle tissues are contractile, meaning they can shorten and thicken.
3. The three types of muscle tissue are skeletal, smooth, and cardiac.
B. Skeletal Muscle Tissue
1. Skeletal muscle tissue forms muscles that usually attach to bones and that are controlled by conscious effort.
2. Skeletal muscle tissue is under conscious control and is therefore called voluntary.
3. Striations of skeletal muscle tissue are alternating light and dark cross-markings.
4. Skeletal muscle tissue functions to move body parts and in swallowing and breathing.
C. Smooth Muscle Tissue
1. Smooth muscle tissue is called smooth because it lacks striations.
2. Smooth muscle tissue is located in walls of most hollow internal organs.
3. Smooth muscle is involuntary because it cannot be consciously controlled.
D. Cardiac Muscle Tissue
1. Cardiac muscle tissue is located only in the heart.
2. An intercalated disc is a specialized intercellular junction located only in cardiac muscle tissue.
3. Like skeletal muscle, cardiac muscle is striated.
4. Like smooth muscle, cardiac muscle is involuntary.
Nervous Tissues
A. Nervous tissues are found in the brain, spinal cord, and peripheral nerves.
B. The basic cells of nervous tissue are neurons.
C. In addition to neurons, nervous tissue also includes neuroglial cells.
I'm not going to suggest what to study for the next part of the test before I ask Mr.Zorn what is the next part of the test going to be about. I'll be adding more helpful videos tomorrow night (don't know how late). If it turns out that the test is on Tuesday, then I will add start making them as soon as I get back from school. Please let me know if the previous information for the test has helped and if I should continue making more videos or notes.
Thursday, October 18, 2012
Connective Tissues
If this was useful to you, please tell me so that I know that I should create more of these for next test. Feel free to share any criticisms to me.
Goblet cells:
location- within columnar epithelium and pseudostratified columnar epithelium.
function- secretion of mucus.
Glial Cells:
Location- in nervous tissue
function- support and to clean up the cells
White blood cells:
location- blood
function- protect body from harmful bacteria and viruses.
Red blood Cells:
location- blood
function- transport oxygen
-location is in the lining of the respiratory tract.
White blood cells- protect the cell
Plasma cells -create antibodies (latch onto foreign proteins that may be harmful and send out a signal to kill them)
Mast cells- inflammation (swelling to heal areas of injury)
Macrophages- phagocytosis (large particles are enveloped in a cell membrane of a larger cell and then stored there and the cell has formed into a food vacuole).
Red blood cells- carry oxygen
Plasma- fluid
location- in tendons (part connecting bone to bone with dense regular connective tissue) and ligaments (joints connecting bone to bone)
-Pseudostratified Columnar Epithelium (mentioned above)
-protection- keeps from physical and chemical injury, and from invasion by micro-organisms.
-absorption- the taking in of nutrients for underlying tissues.
-secretion- production and release of materials from glands.
Source of "Meanings of Functions": http://quizlet.com/12900199/holes-anatomy-ch-5-tissues-flash-cards/
Sorry guys, I messed up this video. I was so nervous and tired! Not a good mix.
Goblet cells:
location- within columnar epithelium and pseudostratified columnar epithelium.
function- secretion of mucus.
Glial Cells:
Location- in nervous tissue
function- support and to clean up the cells
White blood cells:
location- blood
function- protect body from harmful bacteria and viruses.
Red blood Cells:
location- blood
function- transport oxygen
Pseudostratified Columnar Epithelium:
-function is secretions and movement-location is in the lining of the respiratory tract.
Blood:
-function- it depends on which type of blood cells:White blood cells- protect the cell
Plasma cells -create antibodies (latch onto foreign proteins that may be harmful and send out a signal to kill them)
Mast cells- inflammation (swelling to heal areas of injury)
Macrophages- phagocytosis (large particles are enveloped in a cell membrane of a larger cell and then stored there and the cell has formed into a food vacuole).
Red blood cells- carry oxygen
Plasma- fluid
Dense Regular Connective Tissues
function- binds muscles and boneslocation- in tendons (part connecting bone to bone with dense regular connective tissue) and ligaments (joints connecting bone to bone)
Epithelial tissue include:
-Pseudostratified Columnar Epithelium (mentioned above)
-Simple squamous epithelium
-Simple cuboidial epithelium
-Simple columnar epithelium
-Stratified squamous epithelium
Meanings of Functions:
-filtration-trap unwanted particles from reaching underlying tissue.-protection- keeps from physical and chemical injury, and from invasion by micro-organisms.
-absorption- the taking in of nutrients for underlying tissues.
-secretion- production and release of materials from glands.
Source of "Meanings of Functions": http://quizlet.com/12900199/holes-anatomy-ch-5-tissues-flash-cards/
--Simple Squamous epithelium-
Function-- secretion, diffusion, & filtration
--Simple Cuboidal epithelium-
Function-- secretion & absorption
--Simple Columnar epithelium-
Function-- absorption (of nutrients) & secretion (of enzymes and mucus)
--Stratified Squamous epithelium-
Function-- protection
Connective Tissues
I. Loose
A. Areolar
B. Adipose
II. Cartilage
A. Hyaline Cartilage
B. Elastic Cartilage
III. Bone
IV. Blood (Mentioned Above)
Loose:
Areolar tissue:
Function-
- wrap/ cushion organs
Sorry guys, I messed up this video. I was so nervous and tired! Not a good mix.
Adipose tissue:
Function-
- insulates, stores energy, protects organs
Cartilage:
Hyaline cartilage:
Function-
- protects, supports, &provides framework
Elastic cartilage:
Function-
- maintain shape
Bone:
Function-
- supports/provides framework, protects, & stores calcium.
Nervous Tissue
Function-
- transmit impulses
Muscle Tissue
I. Skeletal
II. Cardiac
III. Smooth
Skeletal Muscle
Function-
- movement
Smooth Muscle
Function-
- propels content
Cardiac Muscle
Function-
- pumps blood
Subscribe to:
Posts (Atom)